EFFECT OF PROXIMITY OF BARRIER ON LIFTING
FORCE PRODUCED BY VERTICAL SOLID JETS

F.S. Vladimirov UDC 533.601.135

The effect of proximity to the ground on the lifting force generated by a vertical solid jet
is studied in connection with development of vertical takeoff and landing devices and of air
cushion devices, Such a study was made in [1] for planar flow by an incompressible ideal
fluid, There a generalization of the results obtained on a compressible fluid was made by
the approximation method, In the present work the planar problem of streamline flow past
a dihedral barrier of a gas jet emerging from a channel with parallel walls was solved by
the Chaplygin — Fal'kovich method [2, 3]. The results of [1, 4-9] follow as a particular
case from the solution obtained. Calculations were carried out clarifying the effect of the
proximity of a barrier and the lifting effect of a fluid on flow characteristics at subsonic
speeds.

1. The subsonic gas jet, contained by semiinfinite parallel walls the distance between which is 2d, ex-
tends upward infinitely with velocity v, and density po;. At some distance s from the outlet of the channel
the jet encounters a dihedral barrier in its path which splits it into two
symmetrical branches of width § at infinity. I view of the symmetry
of the problem it is sufficient to examine only one half of the jet (Fig.1).

Here AB is the channel wall; MLO is the axis of symmetry; OFE
is the face of the barrier, of length I ; BC and ED are the free surfaces
of the stream at which the gas velocity v, > vy, of density o ,; m is the
angle between the stream and the x axis at infinity; s is the distance of
the barrier apex 0 from the channel outlet;and @ =om (0 < ¢ < 1) is
the angle which the surface OFE forms with the direction of the velocity
Vi.

It is assumed that a dead air zone LOF is formed at the surface
of the barrier with a curved surface LF at which gas velocity v, > v,
and the density is p,. The pattern of laminar jet flow with a dead space
in front of it was suggested by S. A. Chaplygin [8].

We define the flow rate of gas in the channel as Q and assume that
along the flow line MLFED the flow function ¥ = 0; consequently along
the line ABC, ¥ = Q/2.

At the surface of the velocity trajectory in polar coordinates
T,0 (1 =v2/ vmz), where v is the velocity and vy, the maximum velocity,
and @ is the angle between the velocity and the x axis (Fig. 1), the entire
region occupied by the current will correspond to a sector of a ring
with a cross section along the ray # = 0 and radii 7 and T,, and aper-
ture angle o (Fig. 2). The values which the current function should
take along the boundaries of the velocity trajectory region are as fol-
lows:

Fig. 2
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=0 at 8=0, 7, <1<,
P=0 at fg=q, KT, - 1.1
=02 at 6 =0 <1<,
P=0 at 1=1 IK<oiLa
PY=0 at 1=1, m<Lo<La 1.2)
$=0/2 at 1T=1, 0o m

Thus, the solution of the given problem comes down to Dirichlet's internal solution of the problem for
Chaplygm's equation

bl -1 28 —{-411[1—]—([3——1)171 B i@t 1.3)

in the corresponding subsections of the ring sector. Here 8 = 1/(w —1)and » = cp/cv. Since T< 1/
(28 + 1), in the region under consideration Eq. (1.3) is of the elliptical type.

Following S. V. Fal'dovich [3], we will seek a solution in the form

Py (7, 0) = Z; (4,20 (7) + Bh (1)} sinkd, A =n/s

1.4)
o (v, ) = LE=0 4 S, (Cin () 4 Do (8] sin 48

n=1

Here the index on ¥ corresponds to the number of the subsection of the ring sector in which a solu~
tion is sought; z) (7) is the integral of the equation

Gl -0 R bt (4B =D T — A4 — (B4 1lzn =0 .5

which is regular at 7 = 0; £ (1) is the second linear independent integral of Eq. (1.5) obtained by Lighthill

[10] and Cherry [11, 12] and first used in gas-flowtheory by S. V. Fal'kovich [3]. For the Wronskian of
these integrals we have

w (B) =2 (V6 (T) — L/ (1) za (¥) = A {1 — )Py 1.6
The coefficients A, B, C,, and D), depend on a determination o'f the boundary conditions and the con~
ditions of analytical continuation [3].
In the terms chosen the equation for gas discharge takes the form
Q = 2dv(1 — w)° 1.7

The current functions, determined by (1.4), satisfy the boundary conditions (1.1). We now use the

fulfillment of the boundary conditions (1.2) as well as the conditions of analytical continuation through the
boundaries of the subsection, i.e.,

P )= (1, 0, W= a r-r 0<o<a (1.8
The following system of equations follows from conditions (1.2) and (1.8):

Anz)\ (TO) + Bnc)\ ("‘70) =0
Crza (Ta) 4 Dl (T3) == — (Q (nm)cos hm
(Ap — Co) 2" () + (B, — D) 6 (1) = 0
(An - Cy) (%) + (Bn - Dn) Ea (Tl) = Q /nx

Solving this system of equations and using (1.6), we determine the coefficients Ap, . ..,Dp. Thus
the current function (1.4) is determined, and finally the solution of the problem will take the form

1 (7, 6) = Z‘, 5T (T)sin 0

. 1.9)
5% (¥)sin xe]

(v, 0) = L [23°

n=1

737



Here

1Ty (w1, v Ty, (%, ©0)
H(r)= [ G — 08 hm] T, (o)

T,/ (r1, ) T, (1, T2 T, (1, o)
wy (1) T, (1% o) T, (72 To)

(1.10)

% (T) = cosAm

where for convenience the conditions are set down [13]

Th (e, 1) = za (D)6 (Ti) — s (w)ia (), Ta(t, ©)=0
T"' (Ti7 TJ') = [Tl (Tv t:i)]'r=ri, Tl, (Ti’ ti) = Wy (ti) (iv ] = 01 1'! 2)

The characteristics of the functions f) (7), X () are expressed by the following equalities [14]:

(@) =0, fA()~%(®)=1, ¥X(t))= —cosim
Ar) =X (v) =0

T, (z1, 7o) w, (To)

H (%) = [ o ©0S km] T (e, ) (1.11)
o 2 ERE - e e
llf; A (1) =0, hgﬂo 0 (Ty) = Z’A((?) Z ((:3 — 2((::)) coshm (1.12)
1 29p,"
vl"ilgz?rof," (to) = _}2:' (qol - + 4122)‘ -3 ——‘1;02:: cos ?\.m) .
vil_{n X" (T,) = 3 ( o : i :‘:ﬂ - : i :::27‘ cos }.m)

0= (v /Ty =v /v, (5,7=0,1,2)

2. We determine the connection between the parameters of the problem and the dimensions of the
dead air zone. Along any current line there exist general formulas

P _
do= 4= [2:""’ de—i—@ﬁ”’dr]cose

ZT(d—1) 8 2.1)
2
(1-1:) o 1B+ 3 . ’
dy= [21 dg — Gt R dr] sin @
which at the jet surface 7 = const are transformed to the form
2 By . &
dx———(——)ﬁgcosedﬁ ady = TO—F sin 6 do (2.2)

Substituting ¥,(7, 6) from (1.9) with the calculation (1.10) into (2.2), assuming T = 7, and integrating
the expression obtained over 0 along the jet surface LF from 0 to 8 and then determining the constants of
integration from the condition that xf = I cosw@, y1, = 0 (I; = OF in Fig. 1) we find the parametric equation
for the dead air zone boundary LF

z=1cosa
Q‘ro(i—-ro)’ﬂm i\ (o) n2hcosa  cos(h-41)8 cos(h—1)9° 2.3
LR Z A [(—1) M—1  A+1 T a—1 ] 2.3)
n=}
Qe (i—t)® N () rsin(h—1)0  sin(h}1)0
=g w2 [ e i | ] 2.4)

n=1

From these equalities it is easy to obtain the dimensions OF = I, and L.O = h of the dead air zone, for
which one must insert in (2.3), (2.4) the corresponding 6 =0, 8 = &, and take into account Eq. (1,7)

17/

ll=%‘i(1—‘3\‘p(%)v'"§1(““ wfy’ (to) (2.5)
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h= 2 (2 P (2] D g o () (2.6)

n=1

An expression for the line element dl of thé barrier face follows from Eq. 2.1) at 6 =o,ie. df =0

1— B+t (o)
- 2vm.r’/z (- T)I3+1 (30— )G-—a s 2.7)
Inserting the equation for current flow (1.9) with the calculation (1.10) into Eq. (2.7), integrating the
resulting expression from 7, to 7,, taking into account equalities (2.5) and (1.11), and carrying out the ele-
mentary transformations analogously to [14], we obtain an expression for the segment FE = [, in the form

=g {1 — AT ) [eosm - 2202 2 W (w4 (2.8)

where

A (%, T)= (1 —T1 )B (2)‘/:

— Tz T2

Adding Eqgs. (2.5) and (2.8) we obtain the length I of the barrier surface

D= g {1 — A% %) [cosm - 2202 Z e (o) 2.9)

sina

Integrating Eq. (2.2) over 6 from 0 to 6, using the expression for ¥,(T, 6) from (1.9), and then taking
T = T, and determining the constants of integration from the fact that the coordinates of the point B{s, d)
are known, we obtain the parametric equations of the jet contour BC

-5 O ‘(12 : —
_ —-s-—!-—%rf (1 — 1) 2 Xy (12) i‘;\ 2M cos(h+1)8 cos (A — 1) 67 (2.10)

Ve s ! A1 h—1

va A -

_ Qo (1 — 1oy °°_%x’<m> sin(a — 1) 8 sin (A1) 8
d+7 El [ —1 L1 ]

The equations for the jet contour ED are found analogously

x’' =lcosa
Qrz (1 — way® < % (ve) n%cosa __cos(h-1)0 (cosh —1)8 911
e s Elk[( "% A1 "x—1] ( )
y=lsmoc

Qu(l —w)® <1 T’ (©0) n 2} sin o sm A—4)0  sin(h+1)8
T e 2 [( U o= +—=1 e ]

n=1
Here x' and y' are coordinate points of the locus of contour ED.

To obtain one more relation between the parameters of the problem we take advantage of a hypothesis
of N. E. Zhukovskii [15] that the points C and D lie on equipotential lines. With this assumption, following
[16] and taking into account Egs. (2.9)~(2.11) and the continuity equation

§=dA (Tl, Tz) (212)
we find a relation for v = s/d in the form

v= —ctga+ Aty T,) [sm m -+ cos metg o - — Z M 7 Taka/ (1:2):] (2.13)

n=1
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3. We determine the resultant pressure R on the barrier by integration along its edge
1
R =2(J + poly — pl)sina, J = { pdi (3.1)
5
Here p is the pressure against the barrier face, p) is the pressure in the dead air zone, and p, is the
pressure behind the barrier. Taking Eq. (2.8) into account and using the relations
p= po(1 _ T)Bi‘l, po — vmzl' Z(B + 1) (3 '2)
where p’ is the gas pressure at the stagnant point, we introduce J in the form

= [ AR () g [ SEEDe (20 ] 33

Ty T

From Eqs. (2.5), (2.9), and (3.2), it is easy to obtain the expression

p&—zq—pi—“z(;i_)i ST (%) 3.4)

Qp° t—ma

4 —1
Pl = 2sina 22 [A (%3 Ty} — cosm - s;n ad 2 (—L-‘L'ZX;. (‘l.'z)]

Calculating the integrals in (3.3) using (1.9) and (1.10), as was done in [14], and keeping in mind the
equalities (3.2) and (3 .4), we finally obtain

R=0v 1 +7 (1, 1) — (1,/7,)" cos m} {3.5)

where

¥ (1, Ta) = i_(zi—%%_ﬁ[i . (1:2 )au]

It is easy to ascertain that at vy, — « the function ¥ (T4, 7,) assumes the form

F (v, v) = (v — %)/ 20,2 (3.6)

The relations (1.9), (2.5}, (2.6), (2.9), (2.13), and (3.5) provide a solution of the given problem, from
which a number of published results of S, A. Chaplygin [2], L. N. Stretenskii [4], V. I. Troshin [5], E. Murgu-~
lescu [7], and N. A Slezkin {9] follow as individual cases, For example at 7, =0, m = 7/2, and ¢ =1/2(A =
2n}) using (1.12) we obtain a solution to the problem of a gas jet emerging from a channel and striking an in-
finite sheet in the form

> a1 | Ton (T )] 23 (%) sin2no
e —_— 1 L an
Pi(T, 6) = n 21 [( R Wy (71) }.-ZM (@

. T .
P2 (7, 0) = —S' {_IZL — 04 2 [(—- 1)1"_1 + fan (1) Ty 7 172)] Zon (T) sin ZnQ}

n=1 Wy (1) 2, () 1 z,, (1)) n

81a 1 - z'n (12) Wy, (T2) z'n (1)
v=A(T, T, {1 +—— 2, T 1[(_1) 1 %2 . + w:n ) ":n ) ]} 3.7)
R Quiit+-§ (711 o)l

In this case R can be interpreted as the lifting force produced by infinite streams. However, in the
case of a constant power input [1]

a1 — TP d = (1 — 1) P8 (3.8)

a more convenient criterion of the increase in lifting force owing to proximity to the ground is the relation-
ship of its magnitude to the thrust at a considerable distance from the ground

Lo=2p, v _d 3.9)
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where vy, is the discharge rate of gas from the nozzle at a considerable distance from the ground and p
is the gas density in this jet,

Distributing termwise the second equation of (3.7) in Eq. (3.9) we obtain

e, =R/ Lew=A(1, 7, ) 11+ F (71, T)] (3.10)

Considering the equation of continuity (2.12), the condition of constant power input (3.8) may be repre-
sented as

T (1 — o)’ = 1,1 (1 — 1) (3.11)

4. The results obtained can easily be extended to the case of an incompressible fluid. Equations
(2.5), (2.6), (2.9), (2.13), and (3.5) along with condition (1.13}), (3.6) take the form

A A
2dq1o 1yt A » L 20,
h= 2 (— 0 — coshm
A Iy
n=1 —1 1—gg £ ‘132
_ i 2h
1_ 1—gncosm 2q12 2 (— 1 2, + g2 14y, cos hm
d sin o —1 1—~g2  1—g2

2M 2A
v = —clg 2 + qu(sinm - cos m ctg o) 22 2q12 2 P 1+q01 it coshm
7\42 q21 { q27\
02 02
; 4.1)
R = (Q/2v1) (v:* + v2® — 2u1v2 cos m)

The results of [6] follow from equations (4.1) at v; = v,, and one may also obtain the well-known equa-
tions of N, E. Zhukovskii [15]. For example, supposing & = /2, X = 2n, v, = v, and using the relation

gyt 8n sin? nm_ E
2 (=0T S —stam Intg (7 4+ )

n=}

we obtain a solution to the problem of laminar streamline flow of an incompressible fluid according to
Chaplygin's system

o0
_ 32dque n—1 n q01 sin? nm
W= 2 T
1—q

o 2N i
b 32dq10 2 n 751 Sin®nm
n dnf—4 4 qgi' (4.2)

ml«-

o an o
=2si 2 4 2 sinmintg (Dt P4 B2 S gt __2_ fm S
5+ ——siamin g( 5t 2( 1) W1

R = 4dpiv? sin® m/2

Changing to the limit at m — 0, d — « in Eq. (4.2) and taking from the equation for ! the limit

. 2l
N e ——
bm @) = T em

we find the well-known Chaplygin equations [8]

641q1oH 641q1011 20102l

h=yT7reim "=ifiteie A=xirirem

where

o an a
e n? o __ =3 n %1
5 . = D = L R
= W gy AT g
A
o= o BN
—1 7=
n=1 %
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TABLE 1.

’ Compressible fluid Incompressible fluid
v vy v, ‘ V900 ' cr, Vg Coxo ' cy,
0.2 24.2 213.2 104.7 1.994 199.7 98.8 2.071
0.4 24.2 103.4 63.9 1.374 102.0 63.2 1.378
0.4 54.7 259.5 158.7 1.380 230.5 142.7 1.378
0.6 24.2 70.3 49.3 1.136 70.3 49.3 1.438
0.6 54.7 163.1 114.3 1,137 158.4 110.6 1.138
0.6 76.1 244.0 171.3 1.140 221.0 154.9 1.138
0.8 24.2 53.6 4.1 1.023 55.0 4.8 1,031
0.8 54.7 124.1 94.8 1.027 124.2 94.5 1.031.
0.8 76.4 180.9 138.2 1.029 172.8 131.4 1.031.
0.8 107.6 278.0 213.2 1.030 244.3 185.9 1.031
1.0 L 24.2 45.7 36.9 0.978 46.1 37.2 0.978.
1,0 54.7 104.0 84.9 | 0.980 104,71 84.0 0.978.
1.0 76.1 146.8. 119.4 0.981 144.8 116.8 0.978.
1.0 107.6 214.4 175.3 0.986 204,17 165.2 0.978.
1.2 24.2 39.9 33.7 0.954 40.4 34.0 0.956 -
1.2 54.7 89.6 75.9 0.955 9.2 76.9 0.956.
1.2 76.1 128.0 108.5 0.955 126.0 106.5 0.956-
1.2 107.6 181.8 155.4 0.962 179.3 151.1 0.956
1.2 152.2 268.1 | 232.8 0.967 253.7 4.0 0.956.
1.4 24,2 35.6 31.3 0.946 36.4 31.2 0.946
1.4 54,7 80.3 70.5 0.946 82.3 7.8 0.946
1.4 76.4 114.3 100.4 0.948 114.5 99.8 0.946
1.4 107.6 162.8 143.7 0.948 161.1 140.8 0.946-
1.4 152,2 | 234.0 209.2 0.951 229.0 200.0 0.946
1.4 186.4 293.4 267.3 0.959 280.4 244.7 0.946--
1.6 24.2 33.4 29.7 0.945 33.6 30.1 0.945-
1.6 54,7 74.0 66.7 0.946 75.9 65.4 0.945 .
1.6 76.1 105.3 94.9 0.946 105.6 94.7 0.945
1.6 107.6 143.3 131.3 0.949 149.3 133.9 0,945
1.6 152.2 212.6 194.4 0.954 211.2 181.1 0,945
1.6 186.4 259.7 241.2 0.958 258.6 231.9 0.945 -
1.6 215.2 298.9 282.8 0.967 298.6 267.7 0.945
1.8 24.2 30.8 28.2 0.948 3.4 28.8 0.948 -
1.8 54,7 69.1 63.7 0.950 1.1 65.1 0.948
1.8 76.1 98.3 90.5 0.950 99.0 90,2 0.948 .
1.8 107.6 137.8 127.8 0.952 139.9 128.2 0.948.
1.8 152.2 194.9 182.2 0.956 197.9 184.3 0.948.
1.8 186.4 238.4 225.1 0.961 2424 222.1 0.948
1.8 215,2 275.2 262.9 0.969 279.1 255.9 0.948
2.0 24,2, 0 29.3 27.9 0.954 29.9 27.8 0.953 -
2.0 54.7 65.6 61.4 0.955 67.5 62.9 0.953
2.0 76.1 92.8 87.0 0.956 93.9 87.6 0.953
2.0 107.6 131.7 123.8 0.957 132.8 123.8 0.953-
2.0 152.2 183.9 174.6 0.962 187.0 174.6 0.953
2.0 186.4 223.6 214.8 0,967 230.0 2144.5 0.953
2.0 215.2 257.3 248.4 0.973 265.6 247.6 0.953>
2.0 240.6 280.9 274.4 0.981 296.9 276.8 0.953.

Equations (3.7), (3.10), and (3.11) in the incompressible-liquid case take the form

1+q12 1+912 1+q%2 2
v=qu-+t Ing—n = gl 0 e i) 4.3)

Calculations were carried out using Eqs. (3.7), (3.10), (3.11), and {4.3) with the speed of sound a =
340 m/sec and 8 = 2.5, the results of which are presented in Table 1. Calculations for a compressible
fluid were made according to 7, but to show the effect of compressibility the velocities are given in the
table in meters per second.

The following conclusions derive from an analysis of the table and equations:

1) Withan increase in v from 0.2 to 1.6 the value of ¢y, the relationship of the lifting force to the
thrust at a constant power input, drops more than 45% and reaches a minimum which is less than unity.
Then ¢y, grows with increasing v and reaches unity for an incompressible fluid at v =« , for a compressible
fluid at terminal velocity v, determined by the equation

Zg (T)
—1 2y, (1)

V=1+16124nz
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where Z' represents the summation over odd n;

2) the compressibility effect does not significantly increase the ground effect on the lifting force pro-
duced by vertical solid jets;

3) the additional increase in lifting force does not develop with an increase in the velocity vy in the
case of an incompressible fluid, and this increase is not significant for compressible fluids,
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